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1. Introduction

In recent years noncommutative geometry has been an effervescent field of research partic-

ularly in its relation to solitons in effective descriptions of string theory and D-branes [1, 2].

However its most surprising application comes in a description of strongly correlated quan-

tum magneto-hydrodynamics and various other quantum dynamical fluids [3]. The most

intriguing application in this context is to the quantum Hall effect. Susskind [4] proposed

that non-commutative Chern-Simons theory in 2+1 dimensions would be an appropriate

description of the quantum Hall effect. The quantum Hall effect concerns the strongly

correlated quantum dynamics of a two dimensional electron gas in a strong transverse

magnetic field. The noncommutative space exists in the internal two dimensional space of

the Lagrange coordinate description [5] of the electron fluid.

The continuum, classical description of the small fluctuations of a two dimensional

fluid is easily seen to be a gauge theory of the group of area preserving diffeomorphisms.

The gauge fields (spatial components) correspond to fluctuations of the fluid with respect

to the ground state of a quiescent, undisturbed fluid. The gauge freedom of area preserving

diffeomorphisms, simply corresponds to a relabeling of the elements of the fluid which are

native to the Lagrange description of fluid dynamics, an evident invariance of the theory.

The corresponding conservation law is equivalent to the Gauss law.

In the presence of a strong transverse magnetic field and in the low energy approxima-

tion the classical term with the lowest number of derivatives is exactly the Chern-Simons
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term. In this theory, the Gauss law in fact imposes the vortex free condition on the fluid.

The vortices are frozen out of the fluid and act as sources, just as ordinary charges in

electrodynamics act as sources outside of the electric and magnetic fields. Imposing the

Gauss law via the introduction of a temporal gauge fields and an enhanced gauge invari-

ance (now including time dependent gauge transformations) results in a fully non-abelian

Chern-Simons gauge theory of the group of area-preserving diffeomorphisms.

Susskind’s [4] key observation was that this non-abelian gauge theory appears to be a

truncation to first order of the simplest noncommutative Chern-Simons gauge theory de-

fined on two noncommutative spatial and one normal temporal dimension. Thus Susskind

proposed that the true theory of the quantum Hall effect corresponds to the full non-

commutative Chern-Simons gauge theory. One motivation given for this hypothesis was

to reintroduce the discreteness that exists at the particulate level of the two dimensional

electron gas, a discreteness which the continuum approximation erases. It remained to

be seen if the phenomenology of the quantum Hall effect could be reproduced with this

hypothesis. It was shown in Susskind [4] but also in more detail in [6, 7] that indeed the

noncommutative gauge theoretical description of the quantum Hall effect when restricted

to a finite droplet of the fluid through the introduction of a boundary and boundary degrees

of freedom, was in one to one correspondence to the description afforded by the Laughlin

wave functions [8]. However, the probability densities calculated in the noncommutative

Chern-Simons model was only equal to that of the Laughlin wave functions in large dis-

tance limit [9]. This theory however describes the quantum Hall state via the projection

to the lowest Landau level, it cannot hope to describe any transition between levels or the

transition to the final state called the Hall insulator [10] for very strong external magnetic

field.

In the absence of the transverse magnetic field, the lowest order term in the effective

Lagrangian corresponds to the Maxwell term for the gauge field of area-preserving gauge

transformations. The coefficient of the “electric” part does not have to be correlated with

the coefficient of the “magnetic” part combining to give a relativistically invariant action,

however this can be arranged by re-scaling the gauge field or time variable appropriately.

Again the Gauss law constraint can be obtained by the incorporation of a temporal compo-

nent to the gauge field and writing a gauge invariant expression for the field strength. The

Maxwell term is the next order term that can be added to the pure Chern-Simons gauge

theory. It renders the theory more interesting, the Gauss law constraint does not expel

vortices from the theory but imposes a more dynamical constraint. We have already stud-

ied this theory in previous articles, where we found plane wave solutions for the unbounded

theory [11] and soliton solutions for the theory of a finite droplet [12]. In this article we

further examine the theory on a finite droplet and show the existence of quasi-hole states

and rotational excitations. With this rich spectrum of excitations we expect that the theory

should be able to describe transitions as a function of the parameters. Other authors [13]

have looked for the quantum solution of the noncommutative Maxwell-Chern-Simon theory

and found the correspondance to be to more than one Landau level. However, in order

to find their solution they had to assume that a certain deformation energy of the fluid

(defined in the next section) was either zero or infinity. In this article, we find classical
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quasi-hole solutions for the noncommutative Maxwell-Chern-Simon theory for arbitrary

values of the deformation energy.

2. The model, equations of motion and the Hamiltonian

Susskind’s [4] idea was to describe a two (spatial) dimensional fluid by a gauge field Aj so

that

xi = yi + θǫijAj (2.1)

where xi, i = 1, 2 are the Eulerian coordinates of the fluid and yi, i = 1, 2 are the La-

grangian (comoving) coordinates of the fluid and θ = 1/(2πρ0). Then the Lagrangian of a

charged fluid in an external transverse magnetic field corresponds to the 2+1 dimensional

Maxwell-Chern-Simons theory for small value of the gauge field. The continuum approxi-

mation removes the discreteness that is manifest in the physical fluid. Susskind proposed to

bring this discreteness back by suggesting that the noncommutative version of this theory

should describe the full theory. We studied this theory with the additional modification of

boundary and boundary degrees of freedom [12]. Here we study the same action, however

we add a factor κ to the analog of the magnetic field squared term which corresponds to

the potential energy density of spatial deformations of the fluid. The first term, the analog

of the electric field squared, corresponds to the kinetic term, the Chern-Simons term rep-

resents the interaction of the charged fluid with the external magnetic and the last term

represents the boundary degrees of freedom:

S =
π

g2θ

∫

dt(Tr{(−2[D0,D][D0,D
†] − κ[D,D†][D,D†]))

+2λ(−[D,D†] + 1)D0} − 2Ψ†D0Ψ). (2.2)

Here D0 is the time covariante derivative, D and D† are the holomorphic and anti-

holomorphic combinations of the spatial covariant derivatives respectively and Ψ is a

boundary field. The boundary field was first added by Polychronakos [6] which allowed

him to find solutions of non-commutative Chern-Simons theory in terms of finite matrices.

These correspond to finite droplets of the quantum Hall fluid. Specifically

Dµ =
√

θ(−i∂µ + Aµ) (2.3)

and

D =
D1 + iD2√

2
, D† =

D1 − iD2√
2

(2.4)

and the parameters λ and g2 are related to the noncommutativity parameter θ, the electron

charge e, the external magnetic field B, the density ρ0 and the electron mass m by

λ =
eBθ1/2

m
, g2 =

(2π)2ρ0

m
. (2.5)

We rescale D0 and Ψ and the parameters in the following way, in order to obtain exactly

the action studied in [12]:

D0 =

√

θ

κ
(−i∂0 + A0), λ =

eBθ1/2

m
√

κ
, g2 =

(2π)2ρ0

mκ
, Ψ → Ψ

4
√

κ
(2.6)
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Defining

Ξ =
π

g2θ
(2.7)

we obtain the action

S = Ξ

∫

dt(Tr{(−2[D0,D][D0,D
†] − [D,D†][D,D†]))

+2λ(−[D,D†] + 1)D0} − 2Ψ†D0Ψ). (2.8)

By varying with respect to Ψ†, D0, and D† we get, respectively, the boundary equation

iΨ̇ = A0Ψ, (2.9)

the Gauss law

[D, [D0,D
†]] + [D†, [D0,D]] + λ([D,D†] − 1) + ΨΨ† = 0, (2.10)

and the Ampère law

[D0, [D0,D]] + [D, [D,D†]] = λ[D0,D]. (2.11)

The Hamiltonian is, as in [12], given by

H = Ξ Tr(−2[D0,D
†][D0,D] + [D,D†][D,D†]). (2.12)

3. Rotational excitations

Our first solution corresponds to rotational excitations on top of any given solution. Our

procedure can be applied to the soliton solutions found for example in [12] and to the

solutions that we find in this article. We put

D = D′ +
R√
2θ

eiwt, D0 = D′
0, Ψ = Ψ′ (3.1)

where the primed variables correspond to any known solution to the equations of motion

with R (proportional to the identity) and w (real) simply constant. The Gauss law involves

commutators of the D or D† with each other or with their commutator with D0. The

direct addition of complex constants as in the equation (3.1) or those that result from

the commutators involving D0, simply vanish open taking the further commutators with

D or D†, hence the Gauss law is satisfied. The equation (2.9) is also obviously satisfied.

Replacing (3.1) into the Ampère law yields a solution if w = λ
√

κ√
θ

= eB
m the familiar

cyclotron frequency. We calculate the corresponding change of energy:

∆H = −2ΞTr

(

[D0,
R∗
√

2θ
e−iwt][D0,D

′] + [D0,D
′†][D0,

R√
2θ

eiwt]

+[D0,
R∗
√

2θ
e−iwt][D0,

R√
2θ

eiwt]

)

(3.2)

which yields

∆H = −2ΞTr

(

−λ
R∗
√

2θ
e−iwt[D0,D

′] + λ
R√
2θ

eiwt[D0,D
′†] − λ2 R∗R

2θ

)

. (3.3)
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Since the commutator [D0,D] is off-diagonal in our solution and the solution in [12] the

trace vanishes giving

∆H =
2Ξλ2|R|2N

2θ
. (3.4)

Expressing this in terms of physical constants gives

∆H =
e2B2|R|2N

2m
(3.5)

which is exactly the energy of N rotating electrons with a amplitude R at the frequency

w in a magnetic field.

This solution adds a term to the covariant derivative

D1 = D′
1 +

|R|√
θ

cos(wt + ϕ),D2 = D′
2 +

|R|√
θ

sin(wt + ϕ) (3.6)

where ϕ is the phase of R. Using the Susskind correspondence between the fluid coordinates

and the gauge field (2.1), we see that the solution (3.1) corresponds to rotating about the

original solution as

y1 = y′1 − |R| sin(wt + ϕ), y2 = y′2 + |R| cos(wt + ϕ) (3.7)

where y′1 and y′2 are for operator coordinates of original solution. These rotational excita-

tions clearly also exist in the analogous theory in the infinite plane treated in [11].

4. Quasi-hole solutions

Quasi-hole solutions appears as a modification of the solutions found in [12]. We will take

an ansatz similar to [12], hence D is represented by an N ×N matrix which satisfies certain

boundary conditions, however we will take a periodic D as in [6]. The D is an operator

similar in structure to the annihilation operator of an ordinary Heisenberg algebra, hence

it generally relates a state |n + 1〉 to a state |n〉. For the finite matrix representations used

here, periodicity means that the final state |0〉 is related to the state |N −1〉 since n ranges

over the N values 0, 1, . . . N − 1.

D =

N−2
∑

n=0

√

G(n) + qe
iw(n)

√

κt
√

θ | n〉〈n + 1 | +
√

qe
iρ

√

κt
√

θ | N − 1〉〈0 | (4.1)

If q = 0, this ansatz is equivalent to the one in [12]. G(n) is to be determined from the

equations of motion, we solve these eventually, perturbatively and numerically.

Solutions with this ansatz correspond to quasi-hole solutions because they bound the

lowest eigenvalue of the radius away from zero in a q dependent manner. From (2.1), the

fluctuation of the radius is proportional to the square of the gauge field

A2
1 + A2

2 =

(

D1√
θ

+ i∂1

)2

+

(

D2√
θ

+ i∂2

)2

. (4.2)
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Noncommutative geometry in a finite space is defined by the commutator of the coordinates

[x1, x2] = iθ(1 − N | N − 1〉〈N − 1 |) which imply the commutator for the derivate

[∂1, ∂2] = i
θ (−1 + N | N − 1〉〈N − 1 |). Thus we can put

∂1 =
i√
2θ

(d + d†), (4.3)

∂2 =
1√
2θ

(d − d†)

where

d =

N−2
∑

n=0

√
n + 1 | n〉〈n + 1 | . (4.4)

Then we obtain

R2 ∝ {D − d,D† − d†} (4.5)

where {D†, d} is the anti-commutator. Then the radius becomes

R2 ∝
(

G(0) + 2q − 1 − 2
√

G(0) + q cos

(

w(0)
√

κt√
θ

))

| 0〉〈0 | (4.6)

+

N−2
∑

n=1

(

G(n) + 2q − 2n − 1 − 2
√

G(n) + q
√

n + 1cos

(

w(n)
√

κt√
θ

)

)

| n〉〈n |

+

(

G(N − 2) + 2q − N + 1 − 2
√

G(N − 2) + q
√

N − 1 cos

(

w(N − 2)
√

κt√
θ

))

×

× | N − 1〉〈N − 1 |

a diagonal expression in the states where A(n) = A(n) + A(n− 1). We see that for large q

we have correspondingly large eigenvalues for R2. The smallest eigenvalue is not directly

equal to q, hence our solution corresponds to the fluid pushed away from the origin.

Returning to the solution of the equations of motion, we will consider the gauge A0 = 0

but we let D depend on time. This choice is different from that taken in [12], however in

that case, our choice is simply gauge equivalent. With the periodic ansatz of equation (4.1),

this is not the case. Indeed, our choice give us an additional degree of freedom which we

can identify as ρ. Thus D0 = −i
√

θ∂0, and we can calculate the different terms in the

equations of motion:

[D0,D] =

N−2
∑

n=0

w(n)
√

G(n) + qe
iw(n)

√

κt
√

θ | n〉〈n + 1 | +ρ
√

qe
iρ

√

κt
√

θ | N − 1〉〈0 |

[D0, [D0,D]] =

N−2
∑

n=0

(w(n))2
√

G(n) + qe
iw(n)

√

κt
√

θ | n〉〈n + 1 | +ρ2√qe
iρ

√

κt
√

θ | N − 1〉〈0 |

(4.7)
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The commutator [D,D†] is given by replacing from equation (4.1)

[D,D†] =
N−2
∑

n=0

N−2
∑

m=0

√

G(n) + q
√

G(m) + qe
i
√

κ(w(n)−w(m))t
√

θ [| n〉〈n + 1 |, | m + 1〉〈m |]

+q[| N − 1〉〈0 |, | 0〉〈N − 1 |]

=

N−2
∑

n=0

(G(n) + q) | n〉〈n |−
N−1
∑

n=1

(G(n−1)+q) | n〉〈n |+q(| N−1〉〈N−1 | − | 0〉〈0 |)

=
N−1
∑

n=0

G(n − 1) | n〉〈n | (4.8)

with the notation A(n) ≡ A(n+1)−A(n) and we define G(−1) ≡ 0 and G(N −1) ≡ 0. The

commutator [D†, [D0,D]] can be computed in the same way as [D,D†]. Defining w(−1) ≡ ρ

and w(N − 1) ≡ ρ then

[D†, [D0,D]] = −
N−1
∑

n=0

(G(n − 1) + q)w(n − 1) | n〉〈n | . (4.9)

As this result is hermitian it is also equal to [D, [D0,D
†]]. The final term appearing in the

equations of motion is calculated as

[D, [D,D†]] =

N−2
∑

n=0

N−1
∑

m=0

√

G(n) + qe
iw(n)

√

κt
√

θ G(m − 1)[| n〉〈n + 1 |, | m〉〈m |] (4.10)

+
√

qe
iρ

√

κt
√

θ

N−1
∑

m=0

G(m − 1)[| N − 1〉〈0 |, | m〉〈m |]

=
N−2
∑

n=0

√

G(n) + qe
iw(n)

√

κt
√

θ G(n − 1) | n〉〈n + 1 | +

+
√

qe
iρ

√

κt
√

θ

(

G(−1) − G(N − 2)
)

| N − 1〉〈0 |

with the notation G(n − 1) ≡ ∇2G(n) = G(n + 1) − 2G(n) + G(n − 1) where ∇2G(n) is

discrete Laplacian (which is facilitated with the further notational convenience G(N) ≡
G(0) and 〈N |≡ 〈0 |). Then

[D, [D,D†]] =

N−1
∑

n=0

√

G(n) + qe
iw(n)

√

κt
√

θ ∇2G(n) | n〉〈n + 1 | . (4.11)

The solution for Ψ is simply a general static vector since A0 = 0 in (2.9):

Ψ =
N−1
∑

n=0

λn | n〉. (4.12)

We see, as in [12], that only ΨΨ† contributes off diagonal terms in the Gauss law (2.10).

To eliminate such terms we must take Ψ = λM | M〉. Contrary to [12], different choices of

– 7 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
7

M are all gauge equivalent (i.e. a permutation) since all choices of M are equivalent in our

periodic ansatz (up to the name of the variable). Taking the trace of the Gauss law then

yields λM =
√

Nλ. We choose without loss of generality that M = N − 1. Then the Gauss

law yields (for n = 0, . . . N − 1)

−2(G(n − 1) + q)w(n − 1) + λ
(

G(n − 1) − 1
)

+ λNδN−1,n = 0. (4.13)

We will solve this equation by induction as in [12]. We will show that for n = [0, N − 2]

w(n) = −λ
n + 1 − 2qρ

λ − G(n)

2(G(n) + q)
. (4.14)

This formula is true for n = N − 2, as is verified by considering the Gauss law (4.13) for

n = N − 1. Then assuming the form (4.14) for a general value of n we can prove that it

is valid for n → n − 1. Thus by the principle of induction the formula is valid for all n.

However we have to check/impose that the n = 0 equation of (4.13) is respected. This is

indeed the case if we take (4.14). Taking the Ampère law (2.11) and removing an overall

factor
√

G(n) + qe
iw(n)

√

κt
√

θ we obtain, for n = [0, N − 1].

(w(n))2 + ∇2G(n) = λw(n). (4.15)

Here we have N equations, in N − 1 values of G(n) and also in the two variables q and

ρ. Hence we have N equations and N + 1 parameters, thus we have one free parameter.

Generically, there will be a family of solutions. The Hamiltonian, from equation 2.12, for

this ansatz, using equations 4.7 and 4.8 is

H = Ξ(

N−1
∑

n=0

2(w(n))2(G(n) + q) +
(

G(n − 1))2
)

. (4.16)

4.1 Perturbative analysis of the quasi-hole solution

4.1.1 Large quasi-hole solution

The equation (4.15) is non-linear and thus difficult to solve. So we will look the solution

for q ≫ 1. We define

ρ = ρ0 +
ρ1

q
, G(n) = G0(n) +

G1(n)

q
(4.17)

Then if we expand w to first order in 1/q, we obtain:

w(n) ≃ ρ0 −
1

2q
(λ(n + 1 − G0(n)) − 2ρ1 + 2ρ0G0(n)) (4.18)

(w(n))2 ≃ ρ2
0 −

ρ0

q
(λ(n + 1 − G0(n)) − 2ρ1 + 2ρ0G0(n)) (4.19)

Working to zero order in 1/q, equation 4.15 gives (for n = [0, N − 2])

ρ2
0 + ∇2G0(n) = λρ0. (4.20)
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The discrete Laplacian solved as in the continuous case by

G0(n) = α0n
2 + β0n + δ0, α0 =

λρ0 − ρ2
0

2
. (4.21)

We have to impose the two boundary conditions G0(−1) = G0(N − 1) = 0. These give

α0 − β0 + δ0 = 0, α0(N − 1)2 + β0(N − 1) + δ0 = 0 (4.22)

which are solved by

β0 =
1

2
(N − 2)(ρ2

0 − λρ0), δ0 =
1

2
(N − 1)(ρ2

0 − λρ0). (4.23)

We still have one final condition left (from the n = N − 1 of equation 4.15) which gives

ρ2
0 + α0(N − 2)2 + β0(N − 2) + 2δ0 = λρ0 (4.24)

with solutions

ρ0 = 0 or ρ0 = λ. (4.25)

Either of these solutions give us G0(n) = 0.

With the order zero solutions we can continue to solve the equation (4.15) in first order

in 1/q

−ρ0(λ(n + 1) − 2ρ1) + ∇2G1(n) =
−λ

2
(λ(n + 1) − 2ρ1). (4.26)

This is solved by

G1(n) = α1n
3 + β1n

2 + δ1n + γ1,

α1 =
λ

12
(2ρ0 − λ),

β1 =
1

4
(2ρ0 − λ)(λ − 2ρ1). (4.27)

Again we have our boundary conditions G1(−1) = G1(N − 1) = 0 which imply

δ1 =
1

12
(N2λ − 3λ − 6Nρ1 + 12ρ1)(λ − 2ρ0),

γ1 = − 1

12
(N − 1)(λN − 6ρ1 + λ)(2ρ0 − λ). (4.28)

Finally the condition for n = N − 1 of (4.15) gives

ρ1 =
1

4
(N − 1)λ. (4.29)

Thus

δ1 = − λ

24
(N2 − 9N + 12)(λ − 2ρ0) (4.30)

γ1 =
λ

24
(N − 1)(N − 5)(2ρ0 − λ) (4.31)

β1 =
λ

8
(3 − N)(2ρ0 − λ) (4.32)
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From the Hamiltonian (4.16), for the ρ0 = 0 solution, it can be shown with a little calcu-

lation that a non-zero contribution arises only at order 1/q. The variables (ρ,G(n), w(n))

must be expanded to order 1/q2 to consistently extract this contribution, because the

Hamiltonian contains an explicit factor of q. Indeed, as we will see below, for the ρ0 = 0

solution, the second order expansion of these variables does not in fact give a non-zero

contribution, however they do contribute to the energy for the ρ0 = λ solution. Then we

find the solution to second order:

G2(n) = α2n
5 + β2n

4 + δ2n
3 + γ2n

2 + ξ2n + ǫ2, (4.33)

α2 =
α

20
,

β2 =
β

12
,

δ2 =
−α + 2δ

12

ξ2 = −αN4

20
+

N3

12
(3α − β) +

N2

12
(−5α + 4β − 2δ) (4.34)

+
N

12
(3α − 5β + 6δ − 6γ) +

1

6
(β − 3δ + 6γ)

γ2 =
−β + 6γ

12
,

ǫ2 = ξ2 −
α − 5δ + 15γ

30
, (4.35)

α =
λ2α1

2
,

β =
λ2

4
(2β1 − 1),

δ =
λ

2
(2ρ1 + λδ1 − λ)

γ = λρ1 − ρ2
1 + λρ2 −

λ2

4
− 2ρ2ρ0 +

λ2γ1

2
(4.36)

ρ2 =
−(N2 − 1)(λ3 + 2(2ρ0 − λ))

96
. (4.37)

We have implicitly assumed that q ≫ λ, q ≫ ρi and q ≫ Gi(n) for every i (or more

precisely that these variables are of order of q0). However, we find that the Gi(n) are

polynomial in n where n = 0, . . . , N . Thus if N becomes large, Gi(n) would also become

large. Therefore the condition q ≫ 1 is not adequate for the perturbative expansion to

converge. We see that G1(n) and G2(n) are respectively third and fifth degree polynomials.

Thus our perturbation series would not be valid if N3 ≫ q or N5 ≫ q2. If we replace

G(n) =
∞
∑

i=0

Gi(n)

qi
. (4.38)

in equation (4.15) and expand to order 1/qi, then we obtain a recurrence equation relating

the discrete Laplacian of Gi(n) to Gj(n) with j < i. Assuming that the solution for the
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Gj(n) with j < i is a polynomial in n, the solution for Gi(n) is a polynomial for degree two

higher. Then knowing that G1(n) is a polynomial of order 3, by induction we see that Gi(n)

is a polynomial of the degree 2i + 1. Thus we see that the true perturbative parameter

is actually is n2/q. Since n = 0, . . . , N , we take the strongest condition, N2/q ≪ 1. This

condition might actually not be necessary, since we in fact impose the boundary condition

that G(N −1) = 0, and indeed our numerical analysis agrees with the perturbative analysis

even for N2/q ∼ N .

The Hamiltonian is made up of the kinetic and potential energy. The potential energy

actually contributes at order 1/q2, which we will neglect. The kinetic energy contains terms

of order q. These are in principle the dominant terms for large q. They have a constant

energy density, that is the energy associated to each state| n〉〈n |. In total the trace gives

Hkin.(q) = 2ΞNρ2
0q. (4.39)

At order zero, the kinetic energy density is linear (in n), but the total after the trace is

zero:

Hkin.(q
0) = 2ΞTr

(

−λρ0

N−1
∑

n=0

(

n − 2ρ1

λ

)

| n〉〈n |
)

= 0. (4.40)

For the order 1/q contribution we need w(n)2 to order 1/q2.

(w(n))2 ≃ ρ2
0 −

λρ0

q

(

n + 1 − 2ρ1

λ

)

+
1

q2

(

λ2

4

(

n + 1 − 2ρ1

λ

)2

+ 2ρ0

(

ρ2 −
λG1(n)

2

)

)

.

(4.41)

The kinetic energy then is

Hkin.(1/q) =
2Ξ

q
Tr

(

N−1
∑

n=0

(

λ2

4
(n − 2ρ1

λ
)2 + 2ρ0ρ2

)

| n〉〈n |
)

(4.42)

which gives

Hkin.(1/q) =
2Ξ

q

(

λ2N

48
(N2 − 1) + 2ρ0ρ2N

)

. (4.43)

Hence the energy up to the 1/q is

H ≃ 2ΞNρ2
0q +

2Ξ

q

(

λ2N

48
(N2 − 1) + 2ρ0ρ2N

)

. (4.44)

The two solutions (for ρ0) behave quite differently for ρ0 = λ the energy diverges as q

becomes large while for ρ0 = 0 it vanishes.

Hρ0=λ ≃ 2ΞNλ2q +
2Ξ

q

(

λ2N

48
(N2 − 1) + 2λρ2N

)

(4.45)

Hρ0=0 ≃ Ξλ2N(N2 − 1)

24q
(4.46)

These solutions correspond to an annulus of large radius and small (relatively) thickness

that oscillate in time. We can see for the operator of the radius squared (which is diagonal),
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from equation (4.6), the dominant part of the coefficient (hence eigenvalue of R2) is pro-

portional to 2q for every state, in the large q limit. The next dominant term is proportional

to the square root of q and is an oscillatory term (the frequency for ρ0 = λ is of order q0

and it is weakly n dependent, and for ρ0 = 0 it is of order q−1 ). The next important

term is proportional to 2n + 1. As q ≫ √
q ≫ 1 the radius is very large and oscillates with

an amplitude that is relatively much smaller than the radius. Thus from afar the droplet

looks like an thin annulus that undergoes a nontrivial oscillation.

4.1.2 Small quasi-hole solution

The small quasi-hole solution, for (q ≪ 1), can be obtained by a perturbation on the

solution found in [12]. Take D at first order perturbation to have the form

D = D′ + Dp, D0 = D′
0 + D0p, Ψ = Ψ′ + Ψp, (4.47)

where the primed variables are solutions found in [12] and the variables subscripted p are

the perturbations. To first order the Gauss law gives

0 = [Dp, [D
′
0,D

′†]] + [D′, [D0p,D
′†]] + [D′, [D′

0,D
†
p]] + [D†

p, [D
′
0,D

′]] (4.48)

+[D′†, [D0p,D
′]] + [D′†, [D′

0,Dp]] + λ([Dp,D
′†] + [D′,D†

p]) + ΨpΨ
′† + Ψ′Ψ†

p

while the Ampère law gives

[D0p, [D
′
0,D

′]] + [D′
0, [D0p,D

′]] + [D′
0, [D

′
0,Dp]] + [Dp, [D

′,D′†]] (4.49)

+[D′, [Dp,D
′†]] + [D′, [D′,D†

p]] = λ[D0p,D
′] + λ[D′

0,Dp]

and the constraint on Ψ gives

D0pΨ
′ + D′

0Ψp = 0. (4.50)

We assume the perturbation takes the form

Dp =
√

qe
iρ

√

κt
√

θ | N − 1〉〈0 |, D0p = 0, Ψp = 0. (4.51)

The ansatz in [12] has the form (gauge equivalent to)

D′ =
N−2
∑

n=0

√

G(n)eiw(n)t | n〉〈n + 1 |, A0 = 0 (4.52)

where G(n) and w(n) are explicitly calculated (numerically) in [12]. Then the Gauss law

is automatically satisfied using

[

| N − 1〉〈0 |,
N−2
∑

n=0

f(n) | n + 1〉〈n |
]

=

[

| 0〉〈N − 1 |,
N−2
∑

n=0

f(n) | n〉〈n + 1 |
]

= 0. (4.53)

The Ampère law becomes

[D′
0, [D

′
0,Dp]] + [Dp, [D

′,D′†]] = λ[D′
0,Dp] (4.54)
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with [D′,D′†] given by 4.8. This implies the same condition as before (removing an overall

factor Dp) (4.15) however only for n = N − 1

ρ2Dp + (G(0) + G(N − 2))Dp = λρDp. (4.55)

For other values of n the condition is automatically satisfied. Then ρ is given by

ρ =
λ ±

√

λ2 − 4(G(0) + G(N − 2))

2
. (4.56)

As this expression involves a square root, we see that there is no solution for small λ, as

we will confirm below, in the numerical analysis. This is a gap in the spectrum of allowed

q for small λ. The change in energy is given by

∆H = −2ΞTr([D′
0,D

†
p][D

′
0,D

′] + [D′
0,D

′†][D′
0,Dp] + [D′

0,D
†
p][D

′
0,Dp]) (4.57)

which gives

∆H = −2ΞTr(−ρD†
p[D

′
0,D

′] + ρ[D′
0,D

′†]Dp − ρ2D†
pDp) (4.58)

and using that the two first terms vanish, yields

∆H = 2Ξρ2q. (4.59)

4.2 Numerical analysis of the quasi-hole solution

In this section, we will find numerical solutions of equation (4.15). As our solutions are

built upon the solutions found in [12], we first give the numerical analysis of the equations

considered there. We take this opportunity to correct certain errors that have appeared

in [12]. Equation (5.6) in [12] is incorrect, the kinetic energy is not symmetric about

M = N/2. The correct equation is:

T = 2Ξ

(

{

N−2
∑

n=0

2g2un − un∇2un

}

+ g2(N2 − N − 2NM)

)

(4.60)

Correspondingly, figure (5) in [12] is also not correct. In addition, there seems to be

an inconsistency between figure (5) and figure (7) in [12], the kinetic energy appears to

be greater than the total energy. We give corrected figures, figure 1 and figure 2 here

(not for the same values of the parameters). These are representative solutions for the

system of equations studied in [12]. Our further numerical analysis concerns solutions built

upon these. We ultimately use the Newton method [14] to solve the difference equations.

Finite difference equations on a finite set of variables/parameters and boundary conditions,

after iterating recursively and removing dependent variables, simply become a system of

extremely complicated algebraic equations in a much reduced set of variables. In our case,

we reduce the system to two equations in three variables, which we take to be q, ρ and

G(N − 2). We solve this resultant system by the Newton method. We can constrain our

search a little by noting that q + G(n) ≥ 0 since it appears under a square root in all the
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Figure 1: Kinetic energy as a function of M

for N=100 for (corrected) solution in [12]

Figure 2: Potential energy as a function of

M for N=100 for solution in [12]
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Figure 4: Potential energy as a function of

G(N − 2) for N = 100 and g = λ/2 in unit

of Ξ.

expressions for D. For the case n = N − 1, if we add 2q to the equation (4.15) then we get

the constraint

ρ ∈
[

λ −
√

λ2 + 8q

2
,
λ +

√

λ2 + 8q

2

]

(4.61)

Numerically, we easily find the two solutions that we have determined analytically, for

q ≫ 1. We see in figure (3) that the kinetic energy either diverges as q or vanishes as

1/q as q → ∞, depending on which branch we consider, exactly as we have seen in the

section (4.1.1). For the potential energy, we give a graph as a function of the value of

G(N − 2). The preceding two branches of solutions, are found in figure (4), on the bottom

part of the curve, symmetrically on either side of the point G(N −2) = 0. This dependence

on G(N − 2) can be inferred from the analytic solution in section (4.1.1). We can see in

figure (3) that there exists a region of transition between the two branches of solutions.

This transition region seems to imply a lower limit on the permitted value of q for given λ.

The corresponding transition region in figure (4) is the upper part of the solution between

the two peaks. Further numerical analysis varying λ seems to indicate that the transition
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region actually extends all the way to q = 0 for sufficiently large λ. The q = 0 limit

corresponds to the case studied in [12], where it was found that there are N solutions for

the noncommutative droplet. We find that we recover this multiplicity in the numerical

analysis. Specifically the curve of the potential energy, figure (5) and figure (6) obtains N

peaks in the transition region, each of which extends down to the solution found in [12] for

different choices of Ψ, as seen in figures (7) and (8). (One has to be careful in this limit

for Ψ ≁ |N − 1〉. One recovers the solution of [12] for (G(N − 2 − M) + q) → 0 and not

simply q → 0.) The total energy is always dominated by the kinetic term and the range of

the total energy is from 0 to ∞, however the interesting structure in the potential energy

implies that its contribution to the specific heat could be most important. Comparing

our solution to the one found in [12], figures (1) and (2), we find that the potential energy,

figure (4), of our solution is at least one order of magnitude smaller than that found in [12]

for small λ and will approach the potential energy of the solutions in [12] for large λ (and

small q). The kinetic energy is, however, quite different. In our solution, the kinetic energy

can take any value since q is a free parameter, while the solution in [12] it is constrained to

a discrete set of N values. For the values of λ used in our figures, the kinetic energy of the
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Figure 12: Kinetic energy as a function of

q for g = 0.05

solution in [12] is comparable to the kinetic energy of our solution in the transition region.

The detail of the transition region is found in the figures (9), (10) and (11) which

describes the right half of the transition region (G(N − 2) > 0) in the figure (4). The

potential energy density is seen to translate as we vary G(N−2). This translation continues

for G(N−2) < 0 symmetrically with respect to the behavior for G(N−2) > 0. The potential

energy is found to concentrate in the bulk of the droplet, away from the boundaries in the

middle of the transition regions. During the transition the kinetic density evolves from

a linear density (ρ0 = λ) as in equation (4.40) to a quadratic density (ρ0 = 0) as in

equation (4.42).

Away from the transition region (i.e. for q ≫ 1, we do not give a figure since this region

can be computed analytically), the form of the potential energy density and the G(n)’s

does not change markedly, apart from their overall size. The potential energy density is

concentrated around the boundary.

Finally, in the figure (12), we show the solutions for various values of N . We see that

the minimum value of q seems to be growing linearly with N . Thus, assuming that the

trend continues, as N → ∞ then qmin. → ∞, thus the large q-hole solutions would not
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occur in the infinite plane, at least for small λ.

5. Ground state

The solutions that we have found do not easily allow us to identify the ground state. For

the infinite case, the ground state is given by the solution in terms of simple annihilation

and creation operators, [4, 11],

a, a†, [a, a†] = 1. (5.1)

This solution corresponds to a static, quiescent fluid. However the value of [D,D†] is a

non-zero constant, which should be considered as the zero point of energy. The solutions

in the finite droplet approach this state arbitrarily closely in the limit N → ∞ and for

large λ. We show below in figures (13) and (14), the plot of G(n) for M = N − 1 and

with λ = 2 and the corresponding vorticity of the fluid. If we subtract out the constant

background due to the noncommutativity it is evident that the fluid is almost everywhere

quiescent with only net vorticity imposed near the boundary. We take these states as the

ground states. We also show the corresponding kinetic and potential energy in figures (15)

and (16). The kinetic energy T is concentrated at the boundary, as is the potential energy

V if we subtract off the constant zero point energy.

The quasi-hole solutions that we have found are deformations of these ground states.

Comparing to the case of a quasi-hole with small q, we see from equations (4.58) and (4.59)

that the energy density perturbation is solely in the kinetic energy. It is also localized at

the origin as is evident from the form of the perturbation equation (16). The change in

the energy is linear in q. The solutions with large q are not perturbative and should be

rightly considered as solitons. The question of the stability of our identified ground states

against creation of solitons with large q (the branch with decreasing enenrgy, see figure (3))

is beyond the scope of this paper.

The rotational excitations that we have found presumably give the Landau levels, upon

quantization. These are extremely widely separated in energy for large external magnetic
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field and hence will decouple from small excitations. The ground state will correspond

to the lowest Landau level. The degeneracy of a given Landau level is obtained from

the total number of particles available and the physical space in which these particles are

constrained. The Landau levels will presumably play an important role in describing the

transitions between different Hall plateaux.

6. Conclusion

In this article we have found a rich spectrum of the excitations of the noncommutative

droplet with an action based on the Chern-simons term and an additional Maxwell term.

The existence of the Maxwell term seems to have profound implications on the spectrum

of fundamental oscillations. We have found two kind of solutions, the rotational excitation

and the quasi-hole solution.

The rotational excitations will exist in the finite or infinite case above any solution

of the equations of motion. The rotational frequency is exactly the cyclotron frequency

for the electrons in the model. The rotational excitation correspond to the energy of N

electrons moving in the magnetic field when the amplitude of the rotational excitation is

fixed to the radius of the cyclotron motion. With the quantization of these oscillations we

should recover the familiar Landau levels.

The quasi-holes solutions seem to exist only for the finite droplet. The large quasi-holes

correspond to a thin annulus that undergoes nontrivial oscillatory vibration. They give a

continuous band of solutions built above each soliton solution of the field equations. They

also show a gap in their spectrum as a function of the “charge” q for small enough λ.

We expect that this spectrum of excitations will give rise to a complex phenomenolgy

which will allow us to describe transitions in two dimensional magnetohydrodynamics, even

the quantum Hall system.
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